电弧等离子体法纳米粒子形成装置 APD系列

利用脉冲真空电弧放电形成纳米粒子的新型装置
脉冲真空电弧气相沉积是通过简单工艺产生金属离子以形成超薄膜和纳米粒子的唯一方法。
可以获得其它气相沉积方法无法获得的效果,例如膜的平坦度和细颗粒的形成。

用途

  • APD-S(衬底沉积模型)
    金属薄膜(磁性,等离激元,保护膜)
  • APD-P(粉末承载模型)
    使用纳米颗粒的燃料电池催化剂、废气催化剂、光催化剂、公允值分解催化剂、碳纳米管催化剂及等离子体激元

特長

  • 通过改变电容器的容量,可以自由选择纳米粒子的粒径约1.5 nm~6nm
  • 任何导电材料(靶)都可以等离子体化
    *靶比电阻0.01欧姆或更小
  • 通过改变气氛,可以很容易地生成氧化物和氮化物
  • 被承载的纳米粒子与湿式相比,显示了高活性的催化效果

仕様

型式 APD-S APD-P
样品尺寸 基板
2英寸
粉末
试样容器尺寸(内尺寸)φ95mm×高30mm带搅拌机构
标准气相沉积源数 1 1
APD-P(粉末承载模型)
APD-S(衬底沉积模型)
铁碳多层膜
由此可知,比例尺层压5纳米,铁(黑色部分)层压约1.5纳米。此时的速率约为0.075 nm/脉冲,因为成膜时间为20次1.5 nm。

原理

动作图像

在施加高电位的靶上产生电弧后,储存在电容器中的电荷以脉冲方式瞬时放电,使靶材料成为等离子体,使电离的气相沉积粒子附着在衬底上。

5个特长

  • 通过改变电容器的电容,纳米粒子的粒径可以自由选择约1.5 nm至6 nm。
  • 任何导电材料(靶)都可以等离子体化。
    *靶比电阻0.01欧姆或更小
  • 通过改变气氛,可以很容易地生成氧化物和氮化物。当石墨在H2气体中放电时,它被转化为UNCD(超微晶金刚石)。
  • 与湿式催化剂相比,本装置携带的纳米颗粒表现出更高的催化活性。
  • APD-P型号携带粉末。APD-S型号由2in板承载。
    ※1、3、4については文献に依存します。
通过电弧等离子法负载在CeO2上的Pt及Pd催化剂,与传统湿法制备的催化剂相比,CO氧化活性更高 中所述修改相应参数的值。
引用文献:产业技术综合研究所环境化学技术研究部门藤谷忠博先生发表论文

电容器容量与纳米粒子形状的关系

碳粉载Pt TEM图像

引用文献:産業技術総合研究所 環境化学技術研究部門 藤谷忠博様発表論文

能量的差异对纳米粒子的生成和功能有很大的贡献(图表的纵轴是相对值,因此没有单位)

引用文献:电弧等离子体J.Apply.Phys.101(2007)043304 溅射J.Apply.Phys.35(1964)1819

论文清单

  • C-dopand
    MBE growth mode and C incorporation of GeC epilayers on Si (001) substrates using arc plasma gun as a novel C cource
    Motoki Okinaka*, Yasumasa Hamana1, Takashi Tokuda, Jun Ohta, Masahiro Nunoshita
    Journal of Crystal Growth 249 (2003) 78-86
  • Characterisation of NPs by APD
    Ultra-small platinum and gold nanoparticles by arc plasma deposition
    Sang Hoon Kima,∗, Young Eun Jeonga, Heonphil Haa, Ji Young Byuna, Young Dok Kimb
    Applied Surface Science 297 (2014) 52–58
    10.1016/j.apsusc.2014.01.072
  • HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition
    Kun'ichi Miyazawa, Masaru Yoshitake, Yumi Tanaka
    J Nanopart Res (2017) 19:191
    10.1007/s11051-017-3895-6
  • Characterisation of NPs by APD in ionic liquids
    Temperature-independent formation of Au nanoparticles in ionic liquids by arc plasma deposition
    Yoshikiyo Hatakeyama a,1, Satoshi Kimura b, Tatsuya Kameyama c, Yoshiaki Agawa d, Hiroyuki Tanaka d, Ken Judai a, Tsukasa Torimoto c, Keiko Nishikawa b,⇑
    Chemical Physics Letters 658 (2016) 188–191
    10.1016/j.cplett.2016.06.044
  • CNT catalyst
    High-density horizontally aligned growth of CNT with Conanoparticles deposited by Arc discharge plasma method
    D. Phokharatkul,1 Y. Ohno,1,a H. Nakano,2 S. Kishimoto,1 and T. Mizutani1
    APPLIED PHYSICS LETTERS 93, 053112 2008
    10.1063/1.2969290
  • Robust Noise Modulation of Nonlinearity in Carbon Nanotube Field-Effect Transistors
    Toshio Kawahara , Satarou Yamaguchi, Kenzo Maehashi1, Yasuhide Ohno1, Kazuhiko Matsumoto1, and Tomoji Kawai1
    Japanese Journal of Applied Physics 49 (2010) 02BD11
    10.1143/JJAP.49.02BD11
  • High-Rate Growth of Films of Dense, Aligned Double-Walled Carbon Nanotubes Using Microwave Plasma-Enhanced Chemical Vapor Deposition
    Mineo HIRAMATSU, Hidetoshi NAGAO1, Masaki TANIGUCHI1, Hiroshi AMANO1, Yoshinori ANDO1 and Masaru HORI2
    Japanese Journal of Applied Physics Vol. 44, No. 22, 2005, pp. L 693–L 695
    10.1143/JJAP.44.L693
  • Combinatorial
    Combinatorial Arc Plasma Deposition of Thin Films
    Seiichi HATA , Ryusuke YAMAUCHI1, Junpei SAKURAI1 and Akira SHIMOKOHBE1
    Japanese Journal of Applied Physics Vol. 45, No. 4A, 2006, pp. 2708–2713
    10.1143/JJAP.45.2708
  • Combinatorial Search for Low Resistivity Pd–Cu–Si Thin Film Metallic Glass Compositions
    Ryusuke YAMAUCHI , Seiichi HATA1, Junpei SAKURAI and Akira SHIMOKOHBE
    Japanese Journal of Applied Physics Vol. 45, No. 7, 2006, pp. 5911–5919
    10.1143/JJAP.45.5911
  • Searching for Novel Ru-Based Thin Film Metallic Glass by Combinatorial Arc Plasma Deposition
    Junpei SAKURAI , Seiichi HATA1, Ryusuke YAMAUCHI, and Akira SHIMOKOHBE
    Japanese Journal of Applied Physics Vol. 46, No. 4A, 2007, pp. 1590–1595
    10.1143/JJAP.46.1590
  • Dye sensitizing
    Transparent conductive oxide layer-less dye-sensitized solar cells consisting of floating electrode with gradient TiOx blocking layer"
    Yoshikazu Yoshida,1 Shyam S. Pandey,1 Kenshiro Uzaki,1 Shuzi Hayase,1,a Mitsuru Kono,2 and Yoshihiro Yamaguchi2
    APPLIED PHYSICS LETTERS 94, 093301 2009
    10.1063/1.3089845
  • Exhaust gas catalyst
    CO oxidation activity of thermally stable Fe–Cu/ CeO2 catalysts prepared by dual-mode arc-plasma process
    Satoshi Hinokuma,abc Noriko Yamashita,a Yasuo Katsuhara,a Hayato Kogamia and Masato Machida*ab
    Catal. Sci. Technol., 2015, 5, 3945
    10.1039/c5cy00370a
  • Nanoparticle catalyst preparation using pulsed arc plasma deposition
    Satoshi Hinokuma,abc Satoshi Misumi,a Hiroshi Yoshidab and Masato Machida*ab
    Cite this: Catal. Sci. Technol., 2015, 5, 4249
    10.1039/c5cy00636h
  • Effect of thermal ageing on the structure and catalytic activity of Pd/CeO2 prepared using arc-plasma process
    Satoshi Hinokuma,ab Hiroaki Fujii,a Yasuo Katsuhara,a Keita Ikeueab and Masato Machida*ab
    Catal. Sci. Technol., 2014, 4, 2990
    10.1039/c4cy00291a
  • Pd Fe/CeO2 bimetal catalysts prepared by dual arc-plasma deposition
    Satoshi Hinokuma1, Yasuo Katsuhara, Eriko Ando, Keita Ikeue, Masato Machida∗
    Catalysis Today 201 (2013) 92– 97
    10.1016/j.cattod.2012.03.063
  • Structure and catalytic property of supported rhodium catalysts prepared using arc-plasma
    Satoshi Hinokumaa,b, MadokaOkamotob, ErikoAndob, KeitaIkeueb, MasatoMachidab,∗
    Catalysis Today xxx (2011) xxx–xxx
    10.1016/j.cattod.2011.03.008
  • A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst
    Satoshi Misumi1, Hiroshi Yoshida1,2, Satoshi Hinokuma1,2,3, Tetsuya Sato4 & Masato Machida1,2
    10.1038/srep29737
  • Subnano-particle Ce catalyst prepared by pulsed arc-plasma process
    Satoshi Hinokuma a,b,c, Hayato Kogami a, Noriko Yamashita a, Yasuo Katsuhara a, Keita Ikeue a,b, Masato Machida a,b,*
    Catalysis Communications 54 (2014) 81–85
    10.1016/j.catcom.2014.05.025
  • Arc Plasma Processing of Pt and Pd Catalysts Supported on c-Al2O3 Powders
    S. Hinokuma Æ K. Murakami Æ K. Uemura Æ M. Matsuda Æ K. Ikeue Æ N. Tsukahara Æ M. Machida
    Top Catal (2009) 52:2108–2111
    10.1007/s11244-009-9387-x
  • Fuel cell
    Pt−Ni Nanoparticle-Stacking Thin Film: Highly Active Electrocatalysts for Oxygen Reduction Reaction
    Naoto Todoroki,* Takashi Kato, Takehiro Hayashi, Shuntaro Takahashi, and Toshimasa Wadayama
    ACS Catal. 2015, 5, 2209−2212
    10.1021/acscatal.5b00065
  • The d-Band Structure of Pt Nanoclusters Correlated with the Catalytic Activity for an Oxygen Reduction Reaction
    Eishiro Toyoda,*,† Ryosuke Jinnouchi,† Tatsuya Hatanaka,† Yu Morimoto,† Kei Mitsuhara,‡ Anton Visikovskiy,‡ and Yoshiaki Kido‡
    J. Phys. Chem. C 2011, 115, 21236–21240
    10.1021/jp206360e
  • 2D Platinum Network ORR Catalyst on Carbon and Niobium Oxide Hybrid Support
    C. Xu1, J. Yang1, B. L. Pence1, K. Gath1, P. Pietrasz1, M. Sulek1, K. Sun2, E. Sohm3, G. Meng3
    ECS Transactions, 64 (3) 181-189 (2014)
    10.1149/06403.0181ecst
  • Preparation of Pt/C Catalyst by Coaxial Arc Plasma Deposition for Polymer Electrolyte Membrane Fuel Cells
    Yoshiaki Agawa,a,b,z Masayuki Kunimatsu,c Takeshi Ito,d Yasutaka Kuwahara,a and Hiromi Yamashitaa
    ECS Electrochemistry Letters, 4 (10) F57-F60 (2015)
    10.1149/2.0091510eel
  • Gold catalyst
    Hydrogen Dissociation by Gold Clusters
    Tadahiro Fujitani,* Isao Nakamura, Tomoki Akita, Mitsutaka Okumura, and Masatake Haruta
    Angew. Chem. Int. Ed. 2009, 48, 9515 –9518
    10.1002/anie.200905380
  • Graphene layer growth catalyst
    Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition
    K. Fujita,a) K. Banno, H. R. Aryal,b) and T. Egawa
    APPLIED PHYSICS LETTERS 101, 163109 (2012)
    10.1063/1.4761474
  • Hydrogen peroxide solution
    High performanceofhydrogenperoxidedetectionusingPt nanoparticles-dispersedcarbonelectrodepreparedbypulsedarc plasma deposition
    Takeshi Ito a,n, MasayukiKunimatsu a, SatoruKaneko a, YasuoHirabayashi a, MasayasuSoga a, Yoshiaki Agawa b, KojiSuzuki c
    Talanta 99(2012)865–870
    10.1016/j.talanta.2012.07.048
  • Magnetic thin film
    Magnetic properties of Nd–Fe–B thick film magnets prepared by using arc deposition
    M. Nakano, M. Sahara,a K. Yamawaki, T. Yanai, and H. Fukunaga
    JOURNAL OF APPLIED PHYSICS 107, 09A744 2010
    10.1063/1.3348233
  • Nanocomposite Nd-Fe-B/α-Fe Thick-Film Magnets Prepared by Vacuum Arc Deposition
    Masaki Nakano, Tomoaki Tsutsumi, Takeshi Yanai, and Hirotoshi Fukunaga
    IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 11, NOVEMBER 2014
  • Photo catalyst
    Improved Inactivation Effect of Bacteria: Fabrication of Mesoporous Anatase Films with Fine Ag Nanoparticles Prepared by Coaxial Vacuum Arc Deposition
    H. Oveisi, S. Rahighi, X. J., Y.i Agawa, A. Beitollahi, S. Wakatsuki, and Y. Yamauchi
    10.1246/cl.2011.420
  • Prox catalyst
    Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation
    Kamran Qadir,†,§ Sang Hoon Kim,‡,§ Sun Mi Kim,† Heonphil Ha,‡ and Jeong Young Park*,†
    J. Phys. Chem. C 2012, 116, 24054−24059
    10.1021/jp306461v
  • Catalytic activity of Au TiO2 and Pt TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation
    Sang Hoon Kima,1, Chan-Ho Jungb,c,1, Nruparaj Sahub,c, Dahee Parkb,c, Jung Yeul Yund, Heonphil Haa, Jeong Young Parkb,c,∗
    Applied Catalysis A: General 454 (2013) 53– 58
    10.1016/j.apcata.2012.12.049
  • Thermoelectric element
    Fabrication by Coaxial-Type Vacuum Arc Evaporation Method and Characterization of Bismuth Telluride Thin Films
    M. UCHINO,1 K. KATO,2 H. HAGINO,1 and K. MIYAZAKI1,3
    Journal of ELECTRONIC MATERIALS, 2013 TMS
    10.1007/s11664-012-2438-2
  • TiN film
    Synthesis of TiN thin film on diamond surface for ferrous metal contacts by a new atom beam method
    Hiroshi Kinoshitaa,∗, Shunsuke Yamamotob, Hideaki Yatanib, Tetsuo Nakaic, Nobuo Ohmaeb
    Applied Surface Science 258 (2012) 3002– 3006
    10.1016/j.apsusc.2011.11.026
  • Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films
    Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun
    T. Yoshitake, Y. Nakagawa, A. Nagano, R. O., H. Setoyama1, E. Kobayashi1, K. Sumitani1, Y. Agawa and K. Nagayama
    Jpn. J. Appl. Phys. 49 (2010) 015503

この製品を利用した受託分析のご案内

この製品に関するお問い合わせはこちら

関連製品

  1. 电弧等离子体气相沉积源 APS-1