Arc-Plasma method nano-particle Deposition System
APD series

Inquiries about this product

アークプラズマ法ナノ粒子形成装置APDシリーズイメージ

Inquiries about this product

New nanoparticle deposition system using pulse vacuum arc discharge
Pulse vacuum arc deposition is a unique technique to deposit ultrathin films and nanoparticles by generating metal ions in a simple process. This system can achieve high in terms of film flatness and particle fineness, which is impossible with other systems.

Applications

  • APD-S (Substrate deposition model)
    Metal film (magnetism, Plasmon, protection film)
  • APD-P (Powder support model)
    Fuel cell catalyst by use of nanoparticles, exhaust gas catalyst, photocatalyst, VOC dispersed catalyst, carbon nanotube catalyst, Plasmon

Features

  • Capable of selecting freely nanoparticle diameter from approx.1.5nm to 6 nm by changing condenser capacity
  • Any conductive materials (targets) can be converted into plasma.
    *Specific resistance of a target: 0.01Ωcm or less
  • Nanoparticles supported by this system show highly active catalytic effect compared with ones produced through wet process.

Specifications

Model APD-S APD-P
Sample size Substrate
φ 2 inch
Powder
Vessel size
(inside dimension)
 φ 95 × H 30 (mm)
with stirring mechanism
Standard deposition numbers 1 1

Mechanism

After chamber evacuation, a trigger induces an arc discharge on the surface of target rod. Then highly ionized metal plasma is generated from the target rod without any discharge gases, and deposits on the substrate to form various thin films and nano-particles.

Five Futures

  • The system can select nano-particle diameter within the range of approx. 1.5nm to 6nm by changing condenser capacity.
  • The system can make any material plasmatic in case they are electrically-conductive materials(target).
    *Specific resistance for target is 0.01 ohm cm or less
  • The system can readily generate oxide and nitride by changing atmosphere.
    Also, when graphite is discharged in H2 gas, it generates UNCD(Ultrananocrystalline diamond).
  • The nano-particles supported by the system shows active catalytic effects as compared with wet process.
  • Model APD-P supports nano-particles to powders.
    Model APD-S supports nano-particles to 2-inch substrate.
    *The above-mentioned 1, 3 and 4 depend on literatures.
Pt and Pd catalysts supported to CeO2 with Arc-Plasma method show higher catalytic activity for CO oxidation as compared with catalysts with conventional wet process.
Quoted literatures: “Ministry of Education, element strategic project achievement” by Professor Machida at Kumamoto University

Relation between condenser capacity and nano-particle size

TEM image in which the system supports Pt to carbon powders
Quoted literatures: Article published by Mr. Tadahiro Fujitani at Research Institute for Innovation in Sustainable
Chemistry in National Institute of Advanced Industrial Science and Technology

The difference in energies largely contributes to the generation and function of nano-particles.
(The vertical axis is no unit of quantity required due to relative values.)

Quoted literatures: Arc-plasma J. Appl. Phys. 101(2007)043304 SputterJ. Appl. Phys. 35(1964)1819

Publication List

  • C-dopand
    MBE growth mode and C incorporation of GeC epilayers on Si (001) substrates using arc plasma gun as a novel C cource
    Motoki Okinaka*, Yasumasa Hamana1, Takashi Tokuda, Jun Ohta, Masahiro Nunoshita
    Journal of Crystal Growth 249 (2003) 78-86
  • Characterisation of NPs by APD
    Ultra-small platinum and gold nanoparticles by arc plasma deposition
    Sang Hoon Kima,∗, Young Eun Jeonga, Heonphil Haa, Ji Young Byuna, Young Dok Kimb
    Applied Surface Science 297 (2014) 52–58
    10.1016/j.apsusc.2014.01.072
  • HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition
    Kun'ichi Miyazawa, Masaru Yoshitake, Yumi Tanaka
    J Nanopart Res (2017) 19:191
    10.1007/s11051-017-3895-6
  • Characterisation of NPs by APD in ionic liquids
    Temperature-independent formation of Au nanoparticles in ionic liquids by arc plasma deposition
    Yoshikiyo Hatakeyama a,1, Satoshi Kimura b, Tatsuya Kameyama c, Yoshiaki Agawa d, Hiroyuki Tanaka d, Ken Judai a, Tsukasa Torimoto c, Keiko Nishikawa b,⇑
    Chemical Physics Letters 658 (2016) 188–191
    10.1016/j.cplett.2016.06.044
  • CNT catalyst
    High-density horizontally aligned growth of CNT with Conanoparticles deposited by Arc discharge plasma method
    D. Phokharatkul,1 Y. Ohno,1,a H. Nakano,2 S. Kishimoto,1 and T. Mizutani1
    APPLIED PHYSICS LETTERS 93, 053112 2008
    10.1063/1.2969290
  • Robust Noise Modulation of Nonlinearity in Carbon Nanotube Field-Effect Transistors
    Toshio Kawahara , Satarou Yamaguchi, Kenzo Maehashi1, Yasuhide Ohno1, Kazuhiko Matsumoto1, and Tomoji Kawai1
    Japanese Journal of Applied Physics 49 (2010) 02BD11
    10.1143/JJAP.49.02BD11
  • High-Rate Growth of Films of Dense, Aligned Double-Walled Carbon Nanotubes Using Microwave Plasma-Enhanced Chemical Vapor Deposition
    Mineo HIRAMATSU, Hidetoshi NAGAO1, Masaki TANIGUCHI1, Hiroshi AMANO1, Yoshinori ANDO1 and Masaru HORI2
    Japanese Journal of Applied Physics Vol. 44, No. 22, 2005, pp. L 693–L 695
    10.1143/JJAP.44.L693
  • Combinatorial
    Combinatorial Arc Plasma Deposition of Thin Films
    Seiichi HATA , Ryusuke YAMAUCHI1, Junpei SAKURAI1 and Akira SHIMOKOHBE1
    Japanese Journal of Applied Physics Vol. 45, No. 4A, 2006, pp. 2708–2713
    10.1143/JJAP.45.2708
  • Combinatorial Search for Low Resistivity Pd–Cu–Si Thin Film Metallic Glass Compositions
    Ryusuke YAMAUCHI , Seiichi HATA1, Junpei SAKURAI and Akira SHIMOKOHBE
    Japanese Journal of Applied Physics Vol. 45, No. 7, 2006, pp. 5911–5919
    10.1143/JJAP.45.5911
  • Searching for Novel Ru-Based Thin Film Metallic Glass by Combinatorial Arc Plasma Deposition
    Junpei SAKURAI , Seiichi HATA1, Ryusuke YAMAUCHI, and Akira SHIMOKOHBE
    Japanese Journal of Applied Physics Vol. 46, No. 4A, 2007, pp. 1590–1595
    10.1143/JJAP.46.1590
  • Dye sensitizing
    Transparent conductive oxide layer-less dye-sensitized solar cells consisting of floating electrode with gradient TiOx blocking layer"
    Yoshikazu Yoshida,1 Shyam S. Pandey,1 Kenshiro Uzaki,1 Shuzi Hayase,1,a Mitsuru Kono,2 and Yoshihiro Yamaguchi2
    APPLIED PHYSICS LETTERS 94, 093301 2009
    10.1063/1.3089845
  • Exhaust gas catalyst
    CO oxidation activity of thermally stable Fe–Cu/ CeO2 catalysts prepared by dual-mode arc-plasma process
    Satoshi Hinokuma,abc Noriko Yamashita,a Yasuo Katsuhara,a Hayato Kogamia and Masato Machida*ab
    Catal. Sci. Technol., 2015, 5, 3945
    10.1039/c5cy00370a
  • Nanoparticle catalyst preparation using pulsed arc plasma deposition
    Satoshi Hinokuma,abc Satoshi Misumi,a Hiroshi Yoshidab and Masato Machida*ab
    Cite this: Catal. Sci. Technol., 2015, 5, 4249
    10.1039/c5cy00636h
  • Effect of thermal ageing on the structure and catalytic activity of Pd/CeO2 prepared using arc-plasma process
    Satoshi Hinokuma,ab Hiroaki Fujii,a Yasuo Katsuhara,a Keita Ikeueab and Masato Machida*ab
    Catal. Sci. Technol., 2014, 4, 2990
    10.1039/c4cy00291a
  • Pd Fe/CeO2 bimetal catalysts prepared by dual arc-plasma deposition
    Satoshi Hinokuma1, Yasuo Katsuhara, Eriko Ando, Keita Ikeue, Masato Machida∗
    Catalysis Today 201 (2013) 92– 97
    10.1016/j.cattod.2012.03.063
  • Structure and catalytic property of supported rhodium catalysts prepared using arc-plasma
    Satoshi Hinokumaa,b, MadokaOkamotob, ErikoAndob, KeitaIkeueb, MasatoMachidab,∗
    Catalysis Today xxx (2011) xxx–xxx
    10.1016/j.cattod.2011.03.008
  • A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst
    Satoshi Misumi1, Hiroshi Yoshida1,2, Satoshi Hinokuma1,2,3, Tetsuya Sato4 & Masato Machida1,2
    10.1038/srep29737
  • Subnano-particle Ce catalyst prepared by pulsed arc-plasma process
    Satoshi Hinokuma a,b,c, Hayato Kogami a, Noriko Yamashita a, Yasuo Katsuhara a, Keita Ikeue a,b, Masato Machida a,b,*
    Catalysis Communications 54 (2014) 81–85
    10.1016/j.catcom.2014.05.025
  • Arc Plasma Processing of Pt and Pd Catalysts Supported on c-Al2O3 Powders
    S. Hinokuma Æ K. Murakami Æ K. Uemura Æ M. Matsuda Æ K. Ikeue Æ N. Tsukahara Æ M. Machida
    Top Catal (2009) 52:2108–2111
    10.1007/s11244-009-9387-x
  • Fuel cell
    Pt−Ni Nanoparticle-Stacking Thin Film: Highly Active Electrocatalysts for Oxygen Reduction Reaction
    Naoto Todoroki,* Takashi Kato, Takehiro Hayashi, Shuntaro Takahashi, and Toshimasa Wadayama
    ACS Catal. 2015, 5, 2209−2212
    10.1021/acscatal.5b00065
  • The d-Band Structure of Pt Nanoclusters Correlated with the Catalytic Activity for an Oxygen Reduction Reaction
    Eishiro Toyoda,*,† Ryosuke Jinnouchi,† Tatsuya Hatanaka,† Yu Morimoto,† Kei Mitsuhara,‡ Anton Visikovskiy,‡ and Yoshiaki Kido‡
    J. Phys. Chem. C 2011, 115, 21236–21240
    10.1021/jp206360e
  • 2D Platinum Network ORR Catalyst on Carbon and Niobium Oxide Hybrid Support
    C. Xu1, J. Yang1, B. L. Pence1, K. Gath1, P. Pietrasz1, M. Sulek1, K. Sun2, E. Sohm3, G. Meng3
    ECS Transactions, 64 (3) 181-189 (2014)
    10.1149/06403.0181ecst
  • Preparation of Pt/C Catalyst by Coaxial Arc Plasma Deposition for Polymer Electrolyte Membrane Fuel Cells
    Yoshiaki Agawa,a,b,z Masayuki Kunimatsu,c Takeshi Ito,d Yasutaka Kuwahara,a and Hiromi Yamashitaa
    ECS Electrochemistry Letters, 4 (10) F57-F60 (2015)
    10.1149/2.0091510eel
  • Gold catalyst
    Hydrogen Dissociation by Gold Clusters
    Tadahiro Fujitani,* Isao Nakamura, Tomoki Akita, Mitsutaka Okumura, and Masatake Haruta
    Angew. Chem. Int. Ed. 2009, 48, 9515 –9518
    10.1002/anie.200905380
  • Graphene layer growth catalyst
    Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition
    K. Fujita,a) K. Banno, H. R. Aryal,b) and T. Egawa
    APPLIED PHYSICS LETTERS 101, 163109 (2012)
    10.1063/1.4761474
  • Hydrogen peroxide solution
    High performanceofhydrogenperoxidedetectionusingPt nanoparticles-dispersedcarbonelectrodepreparedbypulsedarc plasma deposition
    Takeshi Ito a,n, MasayukiKunimatsu a, SatoruKaneko a, YasuoHirabayashi a, MasayasuSoga a, Yoshiaki Agawa b, KojiSuzuki c
    Talanta 99(2012)865–870
    10.1016/j.talanta.2012.07.048
  • Magnetic thin film
    Magnetic properties of Nd–Fe–B thick film magnets prepared by using arc deposition
    M. Nakano, M. Sahara,a K. Yamawaki, T. Yanai, and H. Fukunaga
    JOURNAL OF APPLIED PHYSICS 107, 09A744 2010
    10.1063/1.3348233
  • Nanocomposite Nd-Fe-B/α-Fe Thick-Film Magnets Prepared by Vacuum Arc Deposition
    Masaki Nakano, Tomoaki Tsutsumi, Takeshi Yanai, and Hirotoshi Fukunaga
    IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 11, NOVEMBER 2014
  • Photo catalyst
    Improved Inactivation Effect of Bacteria: Fabrication of Mesoporous Anatase Films with Fine Ag Nanoparticles Prepared by Coaxial Vacuum Arc Deposition
    H. Oveisi, S. Rahighi, X. J., Y.i Agawa, A. Beitollahi, S. Wakatsuki, and Y. Yamauchi
    10.1246/cl.2011.420
  • Prox catalyst
    Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation
    Kamran Qadir,†,§ Sang Hoon Kim,‡,§ Sun Mi Kim,† Heonphil Ha,‡ and Jeong Young Park*,†
    J. Phys. Chem. C 2012, 116, 24054−24059
    10.1021/jp306461v
  • Catalytic activity of Au TiO2 and Pt TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation
    Sang Hoon Kima,1, Chan-Ho Jungb,c,1, Nruparaj Sahub,c, Dahee Parkb,c, Jung Yeul Yund, Heonphil Haa, Jeong Young Parkb,c,∗
    Applied Catalysis A: General 454 (2013) 53– 58
    10.1016/j.apcata.2012.12.049
  • Thermoelectric element
    Fabrication by Coaxial-Type Vacuum Arc Evaporation Method and Characterization of Bismuth Telluride Thin Films
    M. UCHINO,1 K. KATO,2 H. HAGINO,1 and K. MIYAZAKI1,3
    Journal of ELECTRONIC MATERIALS, 2013 TMS
    10.1007/s11664-012-2438-2
  • TiN film
    Synthesis of TiN thin film on diamond surface for ferrous metal contacts by a new atom beam method
    Hiroshi Kinoshitaa,∗, Shunsuke Yamamotob, Hideaki Yatanib, Tetsuo Nakaic, Nobuo Ohmaeb
    Applied Surface Science 258 (2012) 3002– 3006
    10.1016/j.apsusc.2011.11.026
  • Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films
    Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun
    T. Yoshitake, Y. Nakagawa, A. Nagano, R. O., H. Setoyama1, E. Kobayashi1, K. Sumitani1, Y. Agawa and K. Nagayama
    Jpn. J. Appl. Phys. 49 (2010) 015503

Arc-Plasma method nano-particle Deposition System APD series Contact form

When you contact ADVANCE RIKO,

The information that you enter will only be used to provide you with a response. However, when you request that we mail you a catalog or other materials, please understand that the shipper specified by ADVANCE RIKO may use only the information necessary to send those materials, such as your name and address.

Please check our privacy policy for more details.

    RequiredName
    RequiredCompany name
    RequiredPhone number
    RequiredEmail address
    RequiredContents of inquiry